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It is a difficult task to solve the Helrnholtz equation (a + P)+(r) = 0 for large values of 
K, since it is practically impossible to use either the finite-difference method or the Green’s 
function method. A new method is given which leads to an attractive finite-difference 
scheme, explicit but nevertheless stable provided that a rather unrestrictive condition is 
satisfied. The new method is tested in the case of laser beam propagation, and it gives 
excellent results. 

1. INTRODUCTION 

Let us consider an unpolarized light beam propagating along the Oz axis of 4!P 
and characterized by a complex scalar #(r) (r = (x, y, z) = Cp, z)), which is the 
solution of the Helmholtz equation 

(A + K2) #(r) = 0, K2 = Ko2(1 + Ep(r))2, (1) 

where d is the Laplacian, K, is the wavenumber, n(r) = 1 + c&r) denotes the index 
of refraction, and the quantity E measures the deviation of the index from unity. 

The following conditions guarantee the existence of a solution of Eq. (1) and its 
uniqueness. 

(WLo = 4”(f); (14 

$(p, 4 = O(l P l-9, as p- 00, a>2 vz>o. (lb) 

In optics, K, is about lo5 cm-l, which leads to numerical difficulties that are readily 
apparent for the simpler case E = 0: 

(A + Ko2) $(r) = 0. (2) 

Indeed, there exist two main possibilities for solving (2): 

(a) The Green’s function method. The Green’s function for the half-space z > 0, 
null on the z = 0 plane, is [l] 

eiKolr--r’I eiK,lf-r’l -- 
G@, r’) = , r _ rl, - , f  _ ,., I ; r=-(x,y.z), f=(x,y,-z), i=2/-1, 
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and it is easy to show that the solution of Eq. (1) for the boundary condition (la) is [I] 

#(R) = - & 2 j-=, zpyp’) $f dx’ dy’; R2 = (x - x’)~ + (JJ - y’)” + z2. 

For K,, - 105, the integrand on the right-hand side of the last equation is a highly 
oscillatory function, and there does not exist a quadrature formula that gives a correct 
result. 

(b) TheJinite-difference method. Equation (2) can be written in the form 

a2*tr> - = La/(r); 
a2 

aZ2 = = - ax2 ( -+ $- + Ko2) 2 -(A, + Ko2), (2’) 

where fl, is the transverse Laplacian. One could consider using the Taylor series 
expansion of #(p, z + h) + #@, z - h), which depends only on (a2p/8z2n) #(G), that is, 
from (2’), on Lp#(r); but, by a rearrangement of terms with respect to increasing 
powers of d,p#(r), it is easy to show that one obtains a power series in Kiph2p/(2p)! 
numerically unsuitable except for unacceptably small values of h. 

Here, we give a numerical method for solving Eqs. (1) and (2) with boundary 
conditions (la) and (lb). Most of the work on the Helmholtz equation in optics 
concerns an asymptotic solution [2], and a list of various attempts can be found in [3]. 

2. PARAXIAL APPROXIMATION TO THE SOLUTION OF Eq. (2) 

Formally,l the solutions of Eq. (2’) are 

#(z) K sin(const + z(Ko2 + dl)1’2)#o(p), 

and these lead to the recurrence relation 

a,P+l + t,W = 2 cos(h(&2 + AJ1j2) x,@; P = #(P, 4 

which, in first-order approximation in A,, valid for paraxial conditions (slow- 
transverse variations on the wavelength scale, slow variation of K) becomes 

t,/P+l + a)+’ = (2 cos K,,h - (h/K,) sin K&d,) p. 

Now, with A, replaced by the five-point Poisson operator, this becomes 

$;” + *;-1 = 2 ~0s Koh#,“l - b sin K&vY+L~ + Kl.z + v%L+~ + #L - 4@), 
(3) 

with b = hlI&hD2, where h, is the step size in the directions Ox and Oy. 

1 I am indebted to a referee for this elegant formal introduction of Eq. (3). 
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In Appendix 1, we prove Eq. (3) on a less formal basis and we also give higher-order 
approximations, but in the text we discuss only Eq. (3). 

2.1. Properties of Eq. (3) 

In this section, we consider the three points: local truncation error, stability, and 
initial data. 

The order of the local truncation error is easy to evaluate, since it follows from 
Appendix 1 that, with respect to b, this order is 0(b2), while as is well known, the 
Poisson operator is an O(/Z,~) approximation of d, . 

To check the stability of (3), we use a method previously described [4]. Assuming 
that the indices j, I, IZ take the values l,..., J, I,..., L, l,..., N, respectively, one intro- 
duces a new index r taking values l,..., JLN and defined by the relation 

r = n + N(l- 1) + NW - 1); r = 1, 2 ,..., JLN. 

Then & = $yZ , and Eq. (3) becomes a simple difference equation 

#,+I + h-1 = 2 ~0s &W, 

- b sin &~(Y%+~L + *r-NL + #Jr+N + *r--N - 4&). (3’) 

The z-transformation [5] of (3’) gives the characteristic equation 

z’+l + zT-l = 2 cos K,hz’ - b sin K,,h(zrfNL + z”-~~ + ZT+N + zr-N - 429, 

and dividing by zr: 

P(z) = z2 - (2 cos K& - b sin K&(zNL + zNL + zN + z-~ - 4))~ + 1 = 0. 
(4) 

The solution of (3’) is stable if and only if all roots zi of the polynomial P(z) satisfy 
1 z+ 1 < 1 and if any roots of modulus 1 are simple. In [4], we introduced a Nyquist- 
like criterion, using the rational function Q(z) = z-“(P(z) - zz), and we proved that 
the characteristic equation has no root outside the unit circle if the curve Q(efB), 
0 < 0 < 277, does not encircle the point - 1. In the present case, one has 

Q(Z) = ~-~{l - [2 cos K,,h - b sin K&(zNL + z-NL + zN + z-N - 4)]z). 

The real and imaginary parts of Q(eie) are 

u(e) = cos 28 - 2 cos &z(e); u(d) = -(sin 28 - 2 sin es(e)), 

with 

a(e) = cos K,,h + 2b sin K,,h ( sin2 F + sin2 $). 

We also proved [4] that if the ei are the zeros of u(B), the curve Q(eie) does not encircle 
the point - 1 if all the quantities 1 + u(&) have the same sign. Here, one has u(8) = 0 
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for 6 = 0,8 = rr, 8 = 0, , where the 0, are the roots of the equation cos 8, - a(&) =O 
when such roots exist, and then 

1 + U(0) = 2(1 - cos k-Jr); 1 + 44 = 20 + 449); i + u(eo) = 0; 

but one must have / a(&)1 < 1, and since 1 a(&,)] < SUP,,(~Q j cos K,h + 2h sin K& 1, 
with 

h = sin2 
NLB N8 

2 + sin2 2 , 

it follows that 

sup /cosK,h+2hbsinK,h~ <l. 
otn<2 

Then (I + u(O))(l + U(T)) > 0 and algorithm (3) is stable. If sin &h cos l&h > 0, 
the stability condition becomes 

~cosK,h+4bsin&h~ < 1. (5’) 

Remark 1. In Appendix 1, we prove that b < 1. 

Remark 2. To check the stability of (3), one could have used the Von Neumann 
harmonic analysis, which also supplies the stability conditions (5). 

One must still discuss the initial condition for starting Eq. (3). In fact, we consider 
here a Dirichlet problem, and the boundary condition (la) supplies the data $; on the 
z = 0 plane, but the difference equation (3) requires $9 and $:1 . 

In theory, using the Green’s function, one could compute the successive derivatives 
(@‘~/~z~),=, and obtain I#~ with a Taylor series expansion, but as discussed in the 
Introduction, this method is unworkable. However, one can compute an approxi- 
mation of I& in the following way. 

The solution $(r) of Eq. (2) is assumed to have the form 4(r) = eiKoZv(r), so that 
Eq. (2) becomes AT(r) + 2&(&p(r)/&) = 0, and we further assume (in agreement 
with the previous paraxial conditions) that 

Thus, y(r) is a solution of the Schrodinger-like equation 

2jKo ‘dr> 7 + d,dr) = 0, 

which for the first step leads to the equation (qTz = @‘,) 

So, one can start (3) with $yz and & = @oh& . 
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2.2. Conservation of the Transverse Energy Flux 

We now prove that for the problem defined by Eq. (1) or Eq. (2) with the boundary 
conditions (la) and (lb), there exists a constant of motion which is the energy flux 
across transverse planes. 

Let IR be a closed domain in a transverse plane z = const and let T be its boundary 
with $(r) the complex conjugate field; Green’s theorem gives 

where dl is the length element on T and a, is the normal derivative. Now, if T tends 
to infinity in both directions, the right-hand side of the previous relation is zero from 
(lb), so that in the transverse plane z = const, one has 

(d(r) d ,4(r) - #(r) AL&r)) dx dy = 0, 
J,=const ” ‘- -’ ‘. 

or using (I), 

and finally, 

- _ #f(r) azq(r) 
a22 1 dx dy = 0, 

#(r) 2!&l 
az ) 

dx dy = const. (‘3 

It is easy to see [6] that 

iKc 
- ($t 87~ 

is the density of the transverse energy flux, so that Eq. (6) expresses the conservation 
of the transverse energy flux. 

From a numerical point of view, Eq. (6) is an important relation, since it enables 
one to test the stability and the quality of computations which should be stopped as 
soon as (6) is no longer constant. But the problem is to obtain a good approximation 
of a$(r)/az. For this, it is sufficient to note that the first derivative 

also satisfies the difference equation (3): 

(q&+1 + (1)&y = 2 cos K& “‘#j”E - b sin K,h 

x eK+l.L + (l)#L,l + (l)#;l+l f (1)#,-1 - 4(1)@z), (7) 
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which supplies (l)#; provided that one knows (l4,4$ and ‘l)#Z . It is shown in 
Appendix 2 that one has a good approximation in 

2.3. Numerical Tests of Eq. (3) 

We have used the difference equation (3) for investigating the propagation of a 
Gaussian laser beam of wavelength 10.6 pm with the data 

K, = 5.927533310 x lo5 m-l; Q(x.Y)=-&~xP(- X2~~‘j; a=O.lm. 

The computations were made as far as 5 km with a step size h = 50 m and with a 
transverse step size h, = 3 cm, so that one has 

cos K& = 0.67498; sin K,h = 0.73783; 

b = 0.093724; cos K& + 4b sin K,h = 0.95152. 

Tables I, II, and III in Appendix 3 contain the results for 0.1, 2, and 5 km, 
respectively. Since the problem has a cylindrical symmetry around the Oz axis, it is 
sufficient to give the values of Re $(r) and Im #( r on a square grid in one quadrant ) 
of the transverse plane. The dimension of the useful square is 15 x 15 cm. The values 
of $(r) tjS(r) are also given. 

Eqs. (7) and (7’) were used for calculating the integral (6), and this integral is actually 
constant with good precision; the exact value is 1.185 x 104. Moreover, as a conse- 
quence of (6), the transverse energy JzZconst d(r) #(r) dx dy is conserved, which also 
shows in Tables I, II, and III (exact value, 10-2). 

It was interesting to check the stability condition (5) and we made the same 
calculations with h, = 2 cm instead of h, = 3 cm, which leads to cos K,,h + 
4b sin K,,h = 1.23 so that condition (5) is not satisfied. We obtained excellent results 
as far as 2.5 km, and then there appeared an instability growing in two or three steps. 
Thus, one must be sure to satisfy (5). 

In most of the work on laser beam propagation, people use a parabolic approxi- 
mation (valid under paraxial conditions) of the Helmholtz equation which is the 
Schrodinger-like equation previously mentioned: 

2iKo q + d,cp(r) = 0. 

For the boundary data 

1 x2 + y2 ’ 
v~~(x,39=~exp(- 2 1, 
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Eq. (8) has the analytical solution 

with 

f = xl6 rl = yla, i = ziK&, 

and the paraxial approximation is &r) = eiKozv(r). 
The computations of $(r) were made for the same conditions as those used 

previously, and they are given in Tables IV, V, and VI. The comparison between 
Tables I-III and IV-VI shows good agreement, especially for the energy density $#. 

3. PARAXIAL APPROXIMATION TO THE SOLUTION OF EQ. (1) 

When one looks for approximate solutions of Eq. (l), one encounters new diffi- 
culties, although they are similar to those found with the Taylor series. A pertur- 
bative series can be formally written as 

We were unable to find a satisfactory method for solving Eq. (1) without making 
further assumptions concerning the perturbation p(r), and from now on, we assume 

I V,$(r)l, 

the following inequalities to be valid: 

I &?(r)l 3 I did(r I Ktp’(r)I > 5’ 

with 

I V,cLYr)l = sup p&, ly!$!p 

where h, is the transverse step, as previously. 

II ? 1 = 1, 2,..., 

1 = 1, 2,..., (9) 

In Appendix 4, we prove that if conditions (9) are fulfilled, the approximate 
solutions of Eq. (1) are the same as the approximate solutions of Eq. (2) with K = 
K,(l + Ep(r)) instead of K, . For the paraxial approximation of Eq. (l), conditions 
(9) do not intervene, and one has instead of (3): 

K.Z = f&U + q&h,, , lh, , nh)), b; = hlK;hp2. (10’) 
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We tested (10) for the same conditions as those used previously, with 

p(r) = i (1 + erf G) exp (- +$-); a, = 100 cm, aY = 10 cm, E = lo-‘, 

(11) 
which corresponds to a simulation of thermal blooming [7]. We found good results 
(that is, integral (6) is constant) as far as 5 km. In fact the value of integral (6)oscillates 
around the exact value. When E is changed into -E, the results are good only to 2 km. 

4. CONCLUSION 

The results of Appendix 3 prove that algorithm (3) is especially interesting, since 
it is an explicit scheme which, as a consequence, is simple and fast but also has a good 
stability provided that the rather unrestrictive condition (5) is satisfied. Also, as 
suggested by the results for case (11) of laser beam propagation in a medium with 
variable index, algorithm (10) should generally be better (provided K(r) varies slowly) 
than the usual difference equation used to solve an equation similar to (8): 

2iK,, y + d,?(r) + eK,2p(r) p;(r) = 0, 

which leads to many well-known difficulties. 

APPENDIX 1 

We assume that 4(r) is as smooth as necessary to ensure the validity of all our 
expansions. Then the Taylor series expansion of p+l + t,P-’ is 

with (y) = p!lj! (p -j)! , where d, j is the jth iterated operator d,j = d,&‘. 
Rearrangingrterms with respect to increasing powers of Lllj@ gives 

641) 

m C-1)” P aj = h2j zj (2pl! j (KJz)~(~-~). 0 642) 

LEMMA 1. For every nonnegative integer j, one has 

h2j dj-1 sin x 
ajz-j@j2(j!) x 3 x = K,h. (A3) 
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To prove (A3), we start from definition (A2) 

a,=llZif (--~PP!- x2(p-j) _ h2j (-l)j f (-1>z U + A! 
j! Di=j (P - A ! PA ! j! Z! (21 + 2j)! 

x21. (A4) 
I=0 

Let f(x) be the sum on the right-hand side of (A4) 

and using the new variable u = x2: 

f(u) = f (--1Y 
u + l)(Z + 2) ... (I +j) uz 

1=0 (21 + 2j)! 

= ; g (--1Y (1 + I)(1 + 2) .-* (I + j - 1) UI 
(21 + 2j - l)! 

that is, 

1 &l sin x =--- 
2 dx2’i-1’ -y-- * 

Inserting this result into (A4) gives (A3); this completes the proof. 

COROLLARY. Using the de$nition of the spherical Bessel functions of the first kind, 

j,(x) = x 
z 

i 
1 i? z sin x 
x ax i -; 

X 
1 = 0, 1) 2,.. .( 

one easiZy proves the relation 

(-1)’ hE+l 
a~ = m ~j~-~(K,h); 1 = 1, 2,... . 

0 

So Eq. (Al) becomes 

*n+l + p-l = 2 a, + C m (-‘i” ~"~'j,~,(K~) A 
z=1 I! 2 Ko- 

(A3 

cw 
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To discuss the conditions for which this series is convergent, we need the following 
lemma: 

LEMMA 2. The eoeficients u$ satisfy the relations 

d 2jaj - 
( 1 
- = 

dh h -a&.1 ; 

2.b _ --- 
h s aim1 dh. 

(A74 

Wb) 

Let us prove (A7b). The proof of (A7a) is similar. From (A4), otte has 

integrating this expression with respect to h gives 

J- aj-1 fit2 = (.j : l)! f& (-lP 

p! ~~b-i+1)~20+1 

(p-j+ 1)!(2p)!(2p+ 1)’ 
or with the new index q = p + 1; 

s aj-1 dh = (j ?l), g (--I)q (q - I)! @J-i@ 

’ 4-3 (q -j>! (24 - 2)! (2q - 1) 

This lemma has an important corollary. 

COROLLARY. One has a, = O(N/K,j). I n ac , f t using x = K,,h, one can write aj as 

so that Eq. (A7b) becomes (l/h) 2KOjaj = - J ajel dx; thus, if a+, = O(hj-l/Ki-l), 
thz’s lasl relation implies a, = O(hf/&j), and since a, = O(h/K,), this completes the 
prooJ 

NOW, to discuss the convergence of (A6), it is useful to introduce the dimensionless 
quantities 

x = hot, Y = 4J% b = h/KaP2, 
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where h, has dimension length. In terms of [, q, the transverse Laplacian becomes 

Then, using this expression and the previous corollary, we see that aid,9 = O(8), 
which leads to the following theorem: 

THEOREM. If iiLi#” is bounded for j = 1,2,..., then the series (Al) converges for 
b < 1. 

Equation (3) corresponds to the first two terms of (A6), and the next approximation 
is 

z,Wl + Ifi”-’ = 2 cos K,,hlfi” - b sin KOhJL# 

b2 
-3 4 ‘OS Koh - K& 

*) iiL2t,b + O(bs). 

APPENDIX 2 

Here we discuss the initial conditions (7’) for Eq. (7). Let us first consider (l)$iL . 
Since I& = eiKo#, , one has 

but (l),;i = (i/2&) Al& , since y(r) is a solution of the Schrodinger equation 
2iK,,(&p(r)/az) + A,q$r) = 0; thus: 

and since &ahp2 > 1 dl& 111 cpii I, one finally has 

To obtain (l)~& , we start with the relation given in the Introduction, 
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which leads to 

a*(r) _ i a2 ____--- 
az 2rr a22 s z=. r+h”(p’) F dx’ dy’, 

and, after some easy computations, one has 

“‘#“(P> = &$o(p) f -&- jo2’ d6’ 1: $ (X + t cos 19, y + t sin 0) 7 dt. (A8) 

For K, - 105, one may neglect the second term on the right-hand side of (A8), which 
reduces to 

To check whether (A9) is a good approximation of (A8), one considers the case of a 
Gaussian beam with #O”@) = exp(--p2); then Eq. (A8) becomes 

(1)+0(p) = e-” liKo - 2 jm e-(t2-iKot) [Io(2rp) - $ 11(24$] dtl 
0 

with 

Z,(z) = ; j; ch(z cos 0) de; z,(z) = ; j: sh(z cos e) cos e de, 

and one has 

Is 

co 
e-(t~-iKot) 

0 (1,(2rp) - 9 1,(2tp)) dt 1 < jm 0 8’ 1 1,Qtp) - $ I,(+)1 dt. 

We performed the integration on the right-hand side of the lastjinequality under the 
conditions of the numerical test of Section 2.3, and we found that this integral, which 
depends on p, has a value between 1 and 300 much less than K. . This justifies the 
use of (A9). 
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APPENDIX 3 

TABLE I 

Solution of the Helmholtz Equation, 
(D = 1OOm) 

x (cm) 

Y (cm) 0 3 6 9 12 15 

Rellr 

0 -0.0407 -0.0389 -0.0340 -0.0271 -0.0198 -0.0132 

3 -0.0389 - 0.0372 -0.0325 -0.0259 -0.0189 -0.0126 

6 -0.0340 -0.0325 -0.0284 -0.0226 -0.0165 -0.0110 

9 -0.0271 -0.0259 -0.0226 -0.0181 -0.0132 -0.00878 

12 -0.0198 -0.0189 -0.0165 -0.0132 -0.00960 -0.00641 

15 -0.0132 -0.0126 -0.0110 -0.00878 -0.00641 -0.00428 
- 

Im4 
--__- 

0 0.563 0.537 0.469 0.373 0.271 0.179 

3 0.537 0.513 0.448 0.356 0.258 0.171 

6 0.469 0.448 0.390 0.310 0.225 0.149 

9 0.373 0.356 0.310 0.247 0.179 0.119 

12 0.271 0.258 0.225 0.179 0.130 0.0862 

15 0.179 0.171 0.149 0.119 0.0862 0.0571 

0 0.318625 0.289882 0.221117 0.139863 0.073833 0.032215 

3 0.289882 0.264553 0.201760 0.127407 0.066921 0.029400 

6 0.221117 0.201760 0.152907 0.096611 0.050897 0.022322 

9 0.139863 0.127407 0.096611 0.061337 0.032215 0.014238 

12 0.073833 0.066921 0.050897 0.032215 0.016992 0.007472 

15 0.032215 0.029400 0.022322 0.014238 0.007472 0.003279 

a Transverse energy flow : 1 j(+;+*~)dxdy\ = 1.165 x 104. 

Transverse energy: 5; . i,h dxdy = 0.00983. 
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TABLE II 

Solution of the Helmholtz Equation% 

(D = 2000m) 

Y (cm) 0 3 6 9 12 15 

0 0.0623 0.0532 0.0295 0.342 x lo-” -0.0252 -0.0397 

3 0.0532 0.0447 0.0226 -0.00455 -0.0276 -0.0404 

6 0.0295 0.0226 0.00507 -0.0162 -0.0334 -0.0419 

9 0.342 x lO-4 -0.00455 -0.0162 -0.0297 -0.0394 -0.0423 

12 -0.0252 -0.0276 -0.0334 -0.0394 -0.0422 -0.0401 

15 -0.0397 -0.0404 -0.0419 -0.0423 -0.0401 -0.0349 

Im* 

0 0.531 0.511 0.453 0.369 0.276 0.187 

3 0.511 0.491 0.435 0.354 0.264 0.179 

6 0.453 0.435 0.385 0.313 0.232 0.156 

9 0.369 0.354 0.313 0.253 0.186 0.124 

12 0.276 0.264 0.232 0.186 0.136 0.0893 

15 0.187 0.179 0.156 0.124 0.0893 0.0575 

0 0.2863 0.2637 0.20603 0.1365 0.07663 0.03644 

3 0.2637 0.24287 0.18973 0.12566 0.07053 0.033528 

6 0.20603 0.18973 0.14814 0.09804 0.05496 0.026099 

9 0.1365 0.12566 0.09804 0.0648 0.03627 0.01719 

12 0.07664 0.07053 0.05496 0.03627 0.02026 0.00959 

15 0.03644 0.033528 0.026099 0.01719 0.00959 0.0045356 

Q Transverse energy flow: ~~(+$*~)dxdyI = 1.163 x lo*. 

Transverse energy: 1s IJ . l/s dxdy 1 = 0.00999. 

58x/28/2-8 
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TABLE III 

Solution of the Helmholtz Equation, 

(D = 5OOOm) 

Y (cm) 0 3 6 9 12 15 

Re4 

0 0.362 0.341 0.304 0.239 0.164 0.0903 

3 0.341 0.332 0.290 0.228 0.155 0.0834 

6 0.304 0.290 0.251 0.194 0.128 0.0643 

9 0.239 0.228 0.194 0.145 0.0897 0.0374 

12 0.164 0.155 0.128 0.0897 0.0472 0.00872 

15 0.0903 0.0834 0.0643 0.0374 0.00872 -0.0156 

0 

3 

6 

9 

12 

15 

0 0.190093 0.179945 0.152932 0.116657 0.080257 0.049363 

3 0.179945 0.170249 0.144616 0.111033 0.076009 0.046956 

6 0.152932 0.144616 0.123026 0.093805 0.064345 0.039855 

9 0.116657 0.111033 0,093805 0.071650 0.049255 0.030299 

12 0.080257 0.076009 0.064345 0.049255 0.033912 0.020812 

15 0.049363 0.046956 0.039855 0.030299 0.020812 0.012787 

Im* 

0.243 0.244 0.246 0.244 0.231 0.203 

0.244 0.245 0.246 0.243 0.228 0.200 

0.246 0.246 0.245 0.237 0.219 0.189 

0.244 0.243 0.237 0.225 0.203 0.170 

0.231 0.228 0.219 0.203 0.178 0.144 

0.203 0.200 0.189 0.170 0.144 0.112 

a Transverse energy flow: 1s (4 - g - 4.2) dxdy / = 1.179 . 104. 

Transverse energy: I). $ dxdy = 0.0100. 
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TABLE IV 

Solution of the Schriidinger Equation 

(D = 1OOm) 

v(cm) 0 3 6 9 12 15 

0 -0.0406 -0.0384 -0.0325 -0.0245 -0.0164 -0.00972 

3 -0.0384 -0.0363 -0.0307 -0.0232 -0.0155 -0.00916 

6 -0.0325 -0.0307 -0.0259 -0.0195 -0.0130 -0.00765 

9 -0.0245 -0.0232 -0.0195 -0.0146 - 0.00972 -0.00565 

12 -0.0164 -0.0155 -0.0130 -0.00972 -0.00638 -0.00365 

15 -0.00972 -0.00916 -0.00765 -0.00565 -0.00365 -0.00203 

0 0.563 0.538 0.470 0.375 0.274 0.183 

3 0.538 0.514 0.449 0.359 0.262 0.175 

6 0.470 0.449 0.393 0.314 0.229 0.153 

9 0.375 0.359 0.314 0.251 0.183 0.122 

12 0.274 0.262 0.229 0.183 0.133 0.0891 

15 0.183 0.175 0.153 0.122 0.0891 0.0595 

0 0.318617 0.290919 0.221956 0.141225 0.075345 0.033584 

3 0.290919 0.265514 0.202543 0.129419 0.068884 0.030709 

6 0.221956 0.202543 0.155120 0.098976 0.052610 0.023468 

9 0.141225 0.129419 0.098976 0.063214 0.033583 0.014916 

12 0.0075345 0.068884 0.052610 0.033583 0.017730 0.007952 

15 0.033584 0.030709 0.023468 0.014916 0.007952 0.003544 
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TABLE V 

Solution of the SchrGdinger Equation 

(D = 2000m) 

x (cm) 

Y (cm) 0 3 6 9 12 15 

0 0.0629 0.0674 0.0780 0.0885 0.0923 0.0862 

3 0.0674 0.0714 0.0808 0.0898 0.0922 0.0851 

6 0.0780 0.0808 0.0871 0.0920 0.0907 0.0813 

9 0.0885 0.0898 0.0920 0.0918 0.0862 0.0743 

12 0.0923 0.0922 0.0907 0.0862 0.0772 0.0639 

15 0,0862 0.0851 0.0813 0.0743 0.0639 0.0508 

0 0.531 0.509 0.448 0.361 0.264 0.175 

3 0.509 0.488 0.429 0.345 0.253 0.167 

6 0.448 0.429 0.377 0.302 0.220 0.144 

9 0.361 0.345 0.302 0.241 0.175 0.113 

12 0.264 0.253 0.220 0.175 0.125 0.0795 

15 0.175 0.167 0.144 0.113 0.0795 0.0494 

0 0.28577 0.26359 0.20685 0.1381 0.07844 0.03791 

3 0.26359 0.24313 0.190795 0.12738 0.072355 0.034966 

6 0.20685 0.190795 0.14972 0.09996 0.05678 0.02744 

9 0.1381 0.12738 0.09996 0.0667 0.03644 0.01832 

12 0.07844 0.072355 0.05678 0.03644 0.02153 0.01040 

15 0.03791 0.034966 0.02744 0.01832 0.01040 0.00503 
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TABLE VI 

Solution of the Schrijdinger Equation 

(D = 5000m) 

Y (cm) 0 3 6 9 12 15 

0 0.355 0.351 0.338 0.313 0.274 0.223 

3 0.351 0.347 0.333 0.308 0.269 0.218 

6 0.338 0.331 0.318 0.291 0.252 0.201 

9 0.313 0.308 0.291 0.263 0.223 0.174 

12 0.274 0.269 0.252 0.223 0.185 0.140 

15 0.223 0.218 0.201 0.174 0.140 0.101 

0 0.245 0.231 0.191 0.134 0.0696 0.0109 

3 0.231 0.217 0.179 0.123 0.0619 0.00581 

6 0.191 0.179 0.144 0.0949 0.0405 -0.00801 

9 0.134 0.123 0.0949 0.0545 0.0109 - 0.0264 

12 0.0696 0.0619 0.0405 0.0109 -0.0197 -0.0442 

15 0.0109 0.0058 1 -0.00801 -0.0264 -0.0442 -0.0561 

0 0.18605 0.176562 0.150725 0.115925 0.079920 0.049848 

3 0.176562 0.167498 0.141602 0.109993 0.076193 0.047558 

6 0.150725 0.141602 0.121860 0.093687 0.065144 0.040465 

9 0.115925 0.109993 0.093687 0.072139 0.049848 0.030973 

12 0.079920 0.076193 0.065144 0.049848 0.034613 0.021554 

15 0.049848 0.047558 0.040465 0.030973 0.021554 0.013348 
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APPENDIX 4 

Here, we prove that expression (A6) with K = K,,(l + E&Y)) instead of K0 gives 
an approximate solution of (1) provided that inequalities (9) are satisfied. 

Indeed, from (Al) and (A2), it is clear that one need only prove the relations 

which are not exact, since A, and K2 do not commute, but which are approximately 
valid when inequalities (9) are satisfied, as we shall prove. 

LEMMA 3. If(i) the relation (AlO) holds for n < n, , (ii) inequalities (9) are satisjied, 
then relation (AlO) is still valid for n, + 1. 

Starting with (AlO), one has 

(A, + K2y+l = (A, + K2)(AI + K2), = i (;) (K2jf2A:-’ 

but 

K 23t2 = Ko2jt2 y ('; ') +t, 

Z=O 

+ 

(A12a) 

and 

A#A:-j) = K2jA;tl-j f 2V,K2j. V,ATei -+- A.~~jd;--j 

= K,2j ,$ (j) l ~{$A;+=l-j + 2V,pz * V,An;’ + AlpzAn;i}, (A12b) 

with (A12a) and (A12b), Eq. (Al 1) becomes 

(A, + K2)“+l = i (;) K,” i cz [&2 (j ; ‘) $A:- 

+ (J!) pzA:fl-j + 2 (;) VLPz . &A:-’ 

+ (I;) ALpzA:-‘/ + ?; (;) K,2j+2~j+1pj+1A;-j, 
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and, with a rearrangement of terms with respect to increasing powers of Ed, this 
becomes 

+ (I j $A:+- + 2 (; j VIP’ . V,AF+ 

+ 6) A,p’A:--j + f l zpz (l f 1) K,2zA:+1-z. 
Z=l 

Taking (9) into account, the coefficient of l z reduces to 

pz i (;j K,2’ [K,” (’ ; ‘j A:-:-’ + (-I j A:+‘-1! + pz (/ If 1) K,zA’J+l-z, (A13) 

but, if (AlO) is valid for n + 1, one has 

(A, + K2)n+l = PS+’ ’ + 1 z. ( j ) K,23 i (;) ,z~z4+1-i 

= x +z y (‘I)(” ; ‘) K,2jA:+1-5 
i=z 

so that the coefficient cz is 

$ y (I,(" ; ') ~zAd:+l--f 

j=Z 
(A14) 

Using the well-known relation (3 = (“,I:) + (“;l), one may easily show that expres- 
sions (A13) and (A14) are equal, which completes the proof. 

COROLLARY. Since Eq. (AlO) is true for n = 1, it is also validfor any n provided 
that (9) is satisfied. 

As a consequence, expression (A6) with K instead of K, supplies approximations 
to the solution of Eq. (1). 
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